Analisis Propagasi Gelombang Radio HF Mode Angkasa untuk Kegiatan Patroli Laut Bea Cukai [HF Sky Wave Propagation Analysis for Customs and Excise Marine Patrol]

Varuliantor Dear, Annis Siradj Mardiani, Harpan Budi Santoso, Gatot Wikantho



Makalah ini membahas tentang hasil analisis propagasi gelombang radio pada spektrum HF (High Frequency; 3–30 MHz) menggunakan mode angkasa (skywave propagation) yang ditujukan untuk mendapatkan rekomendasi frekuensi kerja (fc) bagi kegiatan patroli laut Bea Cukai. Hasil analisis menunjukkan bahwa terdapat 5 rekomendasi rentang frekuensi kerja, yakni 2,170–2,194 MHz, 4,000–4,063 MHz, 8,100–8,815 MHz, 12,230–13,200 MHz, dan 16,360–17,410 MHz. Rentang frekuensi 2,170–2,194 MHz diperuntukkan bagi penggunaan malam hari, baik untuk komunikasi antara Pangkalan Sarana Operasi (PSO) dengan kapal patroli maupun komunikasi antar-PSO. Rentang frekuensi 4,000–4,063 MHz diperuntukkan bagi komunikasi antara PSO dengan kapal patroli pada siang hari serta untuk komunikasi antar-PSO di malam hari. Rentang frekuensi 8,100–8,815 MHz hanya diperuntukkan bagi komunikasi antara PSO dengan kapal patroli pada siang hari. Sedangkan frekuensi 12,230–13,200 MHz dan 16,360–17,410 MHz diperuntukkan bagi komunikasi antar-PSO dengan jarak antara 1.000 km hingga 2.000 km dan jarak lebih dari 2.000 km pada siang hari. Frekuensi yang telah diperoleh dapat diterapkan untuk kegiatan operasional dengan menggunakan manajemen frekuensi yang bersifat manual atau dengan menggunakan sistem Automatic Link Establishment (ALE).




This paper discusses the results of radio wave propagation analysis in HF spectrum (High Frequency; 3–30 MHz) using skywave propagation mode aimed to obtain recommendations for working frequency (fc) for operational activities of Customs and Excise (DJBC) Marine Patrol. The result shows that there are 5 working frequency range recommendations, i.e. 2.170–2.194 MHz, 4.000–4.063 MHz, 8.100–8.815 MHz, 12.230–13.200 MHz, and 16.360–17.410 MHz. Frequency range of 2.170–2.194 MHz is intended for night operation, both for communication between Operation Facility Base (PSO) and Patrol Boats and communication between each PSO. Frequency range of 4.000–4.063 MHz is intended for communication between PSO and Patrol Boats during daytime and for communication between PSOs at nighttime. The frequency range of 8.100– 8.815 MHz is only intended for communication between PSO and patrol boats in daytime, while the frequency ranges of 12.230–13.200 MHz and 16.360– 17.410 MHz are for communication between PSOs within 1,000—2,000 km and daytime communication with distance more than 2,000 km. The frequency obtained then can be used for operational communication activities, whether by manual frequency management methods or automatic methods such as Automatic Link Establishment (ALE) system.



Propagasi Angkasa; Komunikasi Radio HF; Patroli Laut Bea Cukai

Full Text:



Arthur, N.,P., Taylor, I.D., Eddie, K.,D. (2006). Advanced HF Spectrum Management Techniques. In 10th IET International Conference on Ionospheric Radio Systems and Techniques (IRST 2006) (pp.152–156). doi:10.1049/cp:20060256. ISSN=0537-9989

Bradley, P., A. (1996). Is There Still A Role For Propagation Predictions For Frequency Management of Ionospheric HF Communications Links?. In Proceeding of IEE Colloquium on Frequency Selection and Management Techniques for HF Communications Feb. 1996. DOI: 10.1049/ic:19960116

Cilliers, P. J. Coetzee and J. Olckers. (2004). Ionospheric mapping for HF communications and HF direction finding. In Proceeding of 7th Africon Conference in Africa (IEEE Cat. No.04CH37590), Gaborone (pp. 145–154) Vol.1. doi: 10.1109/AFRICON.2004.1406650.

Dear, V. (2011) Kajian Awal Efisiensi Waktu Sistem Automatic Link Establishment (ALE) Berbasis Manajemen Frekuensi. Berita Dirgantara Vol.12 No.12 Juni 2011. ISSN: 1411-8920.

Giesbrecht, J. (2006). A monitoring tool for HF frequency management and license enforcement. In Proceeding of 2006 10th IET International Conference on Ionospheric Radio Systems and Techniques (IRST 2006), 18–21 July 2006, DOI: 10.1049/cp:20060281

Guo, J. Y., and Barton, S. K. (2002). Fresnel Zone Antenna. Boston: Kluwer Academic Publisher. ISBN 1-4020-7124-8

Hudson, S., Horseman, A. and Sugier, J. (2016). Diurnal, Seasonal, and 11-yr Solar Cycle Variation Effects on the Virtual Ionosphere Reflection Height and Implications for the Met Office’s Lightning Detection System, ATDnet, American Meteorological Society Journals


Kemkominfo (2018). Peraturan Menteri Komunikasi dan Informatika Tentang Tabel Alokasi Spektrum Frekuensi Radio Indonesia. Retrieved June 24, 2019 from

McNamara, L., F. (1991). The Ionosphere: Communications, Surveilance, and Direction Finding, Chapter 4.HF Radio Propagation (p. 39–50). Krieger Publishing Company.

NOAA (2018). Space Weather Prediction Center-Sunspot Number Progression. NOAA-SWPC Website. Retrieved September 10, 2018 from

Saakian, A. (2011). Radio Wave Propagation Fundamentals. Artecth House. ISBN -13:978-1-60807-137-1

Sa'at, N., B., and Nagarajoo, K., A. (2012). Modelling the diurnal variation of ionosphere in longitude and latitude over the equatorial region. In Proceedings of 2012 International Conference on Computer and Communication Engineering (ICCCE)(pp. 40–43). Kuala Lumpur, Malaysia: doi: 10.1109/ICCCE.2012.6271148.

Suhartini, S. (2009). Sudut Elevasi dan Ketinggian Antena Untuk Komunikasi Radio HF. Berita Dirgantara Vol. 9 No. 3 September 2008: 75–78. ISSN: 1411-8920

Susetyo, W., Hendrantoro, G., dan Affandi, A. (2008). Prediksi Jangkauan Jaringan Wireless HF untuk Sistem Peringatan Dini Bencana Di Indonesia. Prosiding Seminar Nasional Informatika (SEMNASIF) Vol 1 No. 4

Tamer, A. T., Ozguc A., dan Pektas, R. (2009). The variability of foF2 in different phases of solar cycle 23, Journal of Atmospheric and Solar-Terrestrial Physics 1364–6826

Tripathi, S. C., Khan, P. A.,Ahmad A., Bhawre P., Purohit, P. K., and Gwal A. K., (2011). Effect of enhanced X-ray flux on the D and F layer ionospheric ionization during extreme solar events. In Proceeding of the 2011 IEEE International Conference on Space Science and Communication (IconSpace) (pp. 134–137). Penang, Malaysia. doi: 10.1109/IConSpace.2011.6015868

Wang, J., Ding, G., Wang, H. (2018). HF communications: Past, present, and future. China Communications, vol. 15, no. 9, (pp. 1–9). doi: 10.1109/CC.2018.8456447

Witvliet , B., A. (2015). Near Vertical Incidence Skywave Propagation: Elevation Angles and Optimum Antenna Height for Horizontal Dipole Antennas. In IEEE Antennas and Propagation Magazine, vol. 57, no. 1 (pp. 129–146). doi: 10.1109/MAP.2015.2397071

Zawdie, K., A., Drob, D., P., Siskind, D., E. and Coker, C. (2017). Calculating the absorption of HF radio waves in the ionosphere. Radio Science, vol. 52, no. 6, pp. 767–783, 2017. doi: 10.1002/2017RS006256



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Published by R&D Center for Post and Informatics, MCIT, Indonesia. Powered by OJS