Optimization of Enhanced Mobile Broadband Solution for Rural and Remote Areas: A Case Study of Banten, Indonesia [Optimisasi Jaringan Seluler Pita-Lebar untuk Kawasan Rural dan Terpencil Studi Kasus Banten, Indonesia]

Annisa Sarah, Ki Won Sung

Abstract


Penelitian ini menawarkan solusi untuk akses broadband futuristik di daerah terpencil dan pedesaan dengan pilihan: optimasi LTE; dan perkembangan jaringan pita lebar yang diasumsikan sebagai 5G. Teknologi yang digunakan pada sistem 5G masa depan ialah pemanfaatan frekuensi tinggi, UE-Specific Beamforming, dan Skema Carrier Agregation (CA). Lima klasifikasi dalam implementasi jaringan futuristik: Skenario 1, Single Carrier (SC) LTE 1,8 GHz; Skenario 2, CA LTE 1,8 GHz + 2,6 GHz; Skenario 3, SC 5G 15 GHz; Skenario 4, SC 5G 28 GHz; Skenario 5, CA LTE 1,8 GHz + 5G 15 GHz. Redaman hujan diperhitungkan demi mendapat hasil realistis. Pada wilayah Leuwidamar, Skenario 5 memiliki jumlah BS paling sedikit. Sedangkan di Panimbang, Skenario 3 dan 5 memiliki jumlah BS yang paling sedikit. Namun, jika performansi energi diperhitungkan, Skenario 3 merupakan solusi terbaik. Selanjutnya, jika kita mengimplementasikan Discontinues Transmission (DTX), Skenario 3 dapat memberi kita penghematan energi yang mengesankan, dengan masing-masing penghematan sebesar 97% dan 94% pada daerah Leuwidamar dan Panimbang. Maka, hasil studi menyarankan untuk menggunakan jaringan SC 15 GHz sebagai optimisasi jaringan prospektif masa depan di Leuwidamar dan Panimbang, menimbang tercapainya salah satu target teknis teknologi 5G, yaitu ketersediaan 50 Mbps dimana saja dan kapan saja.

 *****

Our work compared the performance of future broadband network solutions: with Optimized LTE system; and a new enhanced Mobile Broadband (eMBB) system, in which assumed to be prospective 5G network. The proposed eMBB system implements three key-techniques: high frequency, a UE-Specific Beamforming, and Carrier Aggregation (CA). We propose five solutions: Case 1, Single Carrier (SC) LTE 1.8 GHz; Case 2, CA LTE 1.8 GHz + 2.6 GHz; Case 3, SC 5G 15 GHz; Case 4, SC 5G 28 GHz; Case 5, CA LTE 1.8 GHz + 5G 15 GHz. Rain attenuation is considered to aim realistic solution. In the remote area (Leuwidamar), the Case 5 gives the least number of BS, with only 1.6 times densification of the current network. For the rural area cases (Panimbang), it is offered by Case 3 and Case 5 with the same number of BS. However, the best solution in terms of energy performance for both areas is Case 3. With DTX implementation, Case 3 gives an impressive amount of energy saving, with 97% in Leuwidamar and 94% saving in Panimbang. Thus, provided that our assumptions about eMBB techniques are fulfilled the Single Carrier 15 GHz link network is the most efficient.


Keywords


5G; Beamforming; Carrier Aggregation; Rural Telecommunication

Full Text:

PDF

References


Anand, A., Pejovic, V., Belding, E. M., & Johnson, D. L. (2012). VillageCell: Cost Effective Cellular Connectivity in Rural Areas. Proceedings of the Fifth International Conference on Information and Communication Technologies and Development - ICTD ’12, 180. https://doi.org/10.1145/2160673.2160698

Auer, G., & Blume, O. (2012). EARTH Project D2.3 - Energy efficiency analysis of the reference systems, areas of improvements and target breakdown. Energy Aware Radio and Network Technologies (EARTH), INFSO-ICT-247733, Ver. 2.0. [Online]. Available: Http://www.ict-Earth.eu/.

Chiaraviglio, L., Blefari-Melazzi, N., Liu, W., Gutierrez, J. A., Van De Beek, J., Birke, R., … Wu, J. (2017). 5G in rural and low-income areas: Are we ready? In Proceedings of the 2016 ITU Kaleidoscope Academic Conference: ICTs for a Sustainable World, ITU WT 2016. https://doi.org/10.1109/ITU-WT.2016.7805720

Cosseboom, L. (2015). This satellite firm wants to be the “budget airline” of the internet game in rural Indonesia. Retrieved January 1, 2017, from https://www.techinasia.com/indonesia-satellite-broadband-kacific-bignet

Forssell, H. (2015). Energy Efficiency of Heterogeneous LTE Networks. KTH Royal Institute of Technology. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-169910

Frenger, P., Olsson, M., & Eriksson, E. (2014). Radio network energy performance of massive MIMO beamforming systems. 2014 IEEE 25th International Symposium on Personal, Indoor and Mobile Radio Communications, 1289–1293.

Jeanette Wannstrom. (2013). Carrier Aggregation explained. Retrieved November 1, 2017, from http://www.3gpp.org/technologies/keywords-acronyms/101-carrier-aggregation-explained

Katikala, S. (2014). Google Project Loon. Rivier Academic Journal, 10(2), 3–8.

MacCartney, G. R., & Rappaport, T. S. (2017). Rural macrocell path loss models for millimeter wave wireless communications. In IEEE Journal on Selected Areas in Communications (Vol. 35, pp. 1663–1677). https://doi.org/10.1109/JSAC.2017.2699359

Members of the 5G Infrastructure Association. (2015). 5G Vision. Electronic Publishing, 16. Retrieved from www.5g-ppp.eu

Mirfananda, A. S., & Suryanegara, M. (2016). 5G spectrum candidates beyond 6 GHz: A simulation of Jakarta environment. In Proceedings - 2016 IEEE Region 10 Symposium, TENSYMP 2016 (pp. 30–35). https://doi.org/10.1109/TENCONSpring.2016.7519373

National Instruments. (2016). mmWave: The Battle of the Bands. Retrieved from http://www.ni.com/white-paper/53096/en/

NGMN Alliance. (2008). NGMN Radio Access Performance Evaluation Methodology. Retrieved from https://www.ngmn.org/fileadmin/user_upload/NGMN_Radio_Access_Performance_Evaluation_Methodology.pdf

Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015). A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wireless Networks, 21(8), 2657–2676. https://doi.org/10.1007/s11276-015-0942-z

Okvist, P., Asplund, H., Simonsson, A., Halvarsson, B., Medbo, J., & Seifi, N. (2015). 15 GHz propagation properties assessed with 5G radio access prototype. In IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC (Vol. 2015–Decem, pp. 2220–2224). https://doi.org/10.1109/PIMRC.2015.7343666

R&D Center for Post & ICT Resources. (2016). ICT Indicators Infographic. Retrieved from https://web.kominfo.go.id/sites/default/files/20170210-Indikator-TIK-2016-BalitbangSDM-Kominfo.pdf

Sandle, T. (2016). UN thinks internet access is a human right. Retrieved October 8, 2017, from http://www.businessinsider.com/un-says-internet-access-is-a-human-right-2016-7?r=US&IR=T&IR=T

Shen, Z., Papasakellariou, A., Montojo, J., Gerstenberger, D., & Xu, F. (2012). Overview of 3GPP LTE-advanced carrier aggregation for 4G wireless communications. IEEE Communications Magazine. https://doi.org/10.1109/MCOM.2012.6146491

Stare, E., Giménez, J. J., & Klenner, P. (2016). WIB : a new system concept for digital terrestrial television ( DTT ), (November). https://doi.org/10.1049/ibc.2016.0041

Team, 5G Initiative, & NGMN Alliance. (2015). 5G White Paper. By NGMN Alliance 1.0, 124.

Tombaz, S., Frenger, P., Athley, F., Semaan, E., Tidestav, C., & Furuskar, A. (2015). Energy performance of 5G-NX wireless access utilizing massive beamforming and an ultra-lean system design. In 2015 IEEE Global Communications Conference, GLOBECOM 2015. https://doi.org/10.1109/GLOCOM.2014.7417240

Tombaz, S., Han, S. w., Sung, K. W., & Zander, J. (2014). Energy Efficient Network Deployment With Cell DTX. IEEE Communications Letters. https://doi.org/10.1109/LCOMM.2014.2323960

Yu, Y. (2016). Energy- and Cost-Efficient 5G Networks in Rural Areas. KTH Royal Institute of Technology. Retrieved from http://www.diva-portal.org/smash/get/diva2:1084295/FULLTEXT01.pdf




DOI: http://dx.doi.org/10.17933/bpostel.2018.160104

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Published by R&D Center for Post and Informatics, MCIT, Indonesia. Powered by OJS