Wireless Sensor Network Exploiting High Altitude Platform in 5G Network

Veronica Windha Mahyastuty, Iskandar Iskandar, Hendrawan Hendrawan

Abstract


Technology development and socio-economic transformation have increased the demand for 5G cellular networks. They are expected to send information quickly and support many use cases emerging from a variety of applications. One of the use cases on the 5G network is the massive MTC (Machine Type Communication), wherein wireless sensor network (WSN) is a typical application. Challenges faced by a 5G cellular network are how to model an architecture/topology to support WSN and to solve energy consumption efficiency problem in WSN. So, to overcome these challenges, a HAP system integrated with WSN which uses Low Energy Adaptive Hierarchy routing protocol is implemented. The HAP system is designed to be used at a 20-km altitude, and the topologies used are those with and without clustering. It uses 1,000 sensor nodes and Low Energy Adaptive Clustering Hierarchy protocol. This system was simulated using MATLAB. Simulations were performed to analyze the energy consumption, the number of dead nodes, and the average total packets which were sent to HAP for non-clustered topology and clustered topology. Simulation results showed that the clustered topology could reduce energy consumption and the number of dead nodes while increasing the total packet sent to HAP.

*****

Perkembangan teknologi dan transformasi sosial-ekonomi telah menyebabkan bisnis jaringan seluler 5G mengalami perubahan, sehingga jaringan seluler 5G diharapkan dapat mengirim informasi dengan cepat dan mendukung kasus penggunaan yang banyak bermunculan dari berbagai aplikasi. Salah satu kasus penggunaan pada jaringan 5G adalah massive Machine Type Communication (MTC). Salah satu aplikasi massive MTC adalah jaringan sensor nirkabel (JSN). Tantangan bagi jaringan seluler 5G ini adalah bagaimana memodelkan arsitektur/topologi untuk mendukung JSN dan bagaimana mengatasi masalah efisiensi konsumsi energi di JSN. Untuk menjawab tantangan ini, maka diterapkan sistem HAP yang terintegrasi JSN dan menggunakan protokol routing Low Energy Adaptive Clustering Hierarchy. Sistem HAP dirancang untuk digunakan di ketinggian 20 km dengan topologi tanpa dan dengan clustering, menggunakan 1.000 node sensor. Sistem ini telah disimulasikan dengan menggunakan MATLAB. Simulasi dilakukan untuk melihat konsumsi energi, jumlah node yang mati dan rata-rata total paket yang dikirim ke HAP untuk topologi tanpa dan dengan clustering. Dari serangkaian simulasi, terlihat bahwa topologi dengan clustering dapat mengurangi konsumsi energi dan jumlah node yang mati, sekaligus meningkatkan total paket yang dikirimkan ke HAP.


Keywords


5G, HAPs, MTC, WSN, energy consumption

Full Text:

PDF(ENG)

References


Agiwal. M., Roy. A., Saxena. N. (2016). Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 1617-1655, third quarter 2016.

Akyildis. I. F., Su. W., Sankarasubramaniam. Y., Cayirci.E. (2002). A Survey on Senosr Networks. IEEE Communications Magazine, vol. 40, no. 8, pp. 102-114, Aug 2002.

Asadi, A., Wang. Q., Mancuso. V. (2014). A Survey on Device-to-Device Communication in Cellular Networks. IEEE Communication Surveys & Tutorials, vol. 16, no. 4, pp: 1801-1819, Fourth Quarter .

Boccardi. F., Heath. R. W., Lozano. A., Marzetta. T.L., Popovski. P. (2014). Five Disruptive Technology Directions for 5G. IEEE Communications Magazine, vol. 52, no. 2, pp: 74-80, 2014.

Cao. Y., Jiang. T., Han. Z. (2016). A Survey of Emerging M2M Systems: Context, Task, and Objective. IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1246-1258, Dec. 2016.

Djuknic. G. M., Freidenfelds. J., Okunev. Y. (1997). Establishing Wireless Communications Services via High Altitude Platforms: A Concept Whose Time Has Come?. IEEE Commun. Mag., vol. 35, no. 9, pp. 128–35, Sept. 1997.

Ekram. H, Monowar. H. (2015). 5G Cellular: Key Enabling Technologies and Research Challenges. IEEE Instrumentation & Measurement Magazine, vol. 18, no. 3, pp. 11-21, June 2015.

Grace. D., Spillard. C., Thornton. J, Tozer. T.C. (2002). Channel Assignment Strategies for a High Altitude Platform Spotbeam Architecture. Proceeding the 13th IEEE Symposium on Personal, Indoor and Mobil Radio Communication (PIMRC) 2002, Lisbon, 15-18 September 2002.

Hattachi. R. E., Erfanian. J. (2015). NGMN 5G White Paper. NGMN Ltd.

Heinzelman. W. B., Chandrakasan. A. P., Balakrishnan. H. (2002). An Application-Specific Protocol Architecture for Wireless Microsensor Networks. IEEE Transactions on Wireless Communication, Vol. 1, No. 4, October, 2002.

Iskandar, Putro. D. R. (2008). Performance Evaluation of Broadband WiMAX Services over High Altitude Platforms (HAPs) Communication Channel. The Fourth International Conference on Wireless and Mobile Communications, Athens, pp. 55-59, 2008.

Iskandar , Shimamoto. S. (2006). Channel characterization and performance evaluation of mobile communication employing stratospheric platforms. IEICE Transactions on Communications, vol. E89-B, no. 3, pp 937-944, March, 2006.

Karapantazis. K., Pavlidou. F.N. (2005). Broadband Communications via High-Altitude Platforms: A Survey. IEEE Communications Surveys & Tutorials, vol 7, Issue 1, 2005.

Manikandan. K., Purusothaman. T. (2010). An Efficient Routing Protocol Design for Distributed Wireless Sensor Networks. International Journal of Computer Applications. Vol 10, Issue 4, November 2010

Mahyastuty. V. W., Pramudita A. A. (2013). Energy Consumption Evaluation of Low Energy Adaptive Clustering Hierarchy Routinng Protocol for Wireless Sensor Network. IEEE COMNETSAT. Yogyakarta.

Mahyastuty. V. W., Pramudita A. A. (2014). Low Energy Adaptive Clustering Hierarchy Routing Protocol for Wireless Sensor Network. TELKOMNIKA, Vol 12, No. 4, December 2014, pp963-968.

Morioka. Y. (2011). LTE for mobile consumer devices. ETSI Workshop on Machine-to-Machine standardization.

Pi. Z., Khan. F. (2011). System Design and Network Architecture for a Millimeter-wave Mobile Broadband (MMB) system. 34th IEEE Sarnoff Symposium, Princeton, NJ, 2011, pp. 1-6, 2011.

Pi. .Z., Khan. F. (2011). An Introduction to Millimeter-wave Mobile Broadband Systems. IEEE Communications Magazine, vol. 49, no. 6, pp: 101-107, 2011

Prathap. U., Shenoy. P.D., Venugopal. K. R, Patnaik. L.M. (2012). Wireless Sensor Networks Applications and Routing Protocols: Survey and Research Challenges. 2012 International Symposium on Cloud and Services Computing, Mangalore, 2012, pp. 49-56.

Taori. R., Sridharan. A. (2014). In-band, Point to Multi-point, mm-Wave Backhaul for 5G networks. IEEE International Conference on Communications Workshops, pp: 96-101, 2014.

XingGuo. L., JunFeng. W., LinLin. B. (2016). LEACH Protocol and its Improved Algorithmn in Wireless Sensor Network. 2016 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery.

Yang. Z., Mohammed. A. (2008). High Altitude Platforms for Wireless Sensor Network Applications. 2008 IEEE International Symposium on Wireless Communication Systems, Reykjavik, 2008, pp. 613-617.

Zhang. Y., Yu. R., Nekovee. M., Liu. Y., Xie. S., Gjessing. S. (2012). Cognitive machine-to-machine communications: visions and potentials for the smart grid. IEEE Network, vol. 26, no. 3, pp: 6-13, 2012.




DOI: http://dx.doi.org/10.17933/bpostel.2017.150105

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Published by R&D Center for Post and Informatics, MCIT, Indonesia. Powered by OJS